

ISSN: 2320-1363

DESIGN OF FIXTURE TO OPTIMISE PROCESS PLAN OF AEROSPACE COMPONENT

*DURGA BHAVANI, **G. VENKATESH

*PG SCHOLAR, **ASSISTANT PROFESSOR

DEPARTMENT OF MECHANICAL ENGINEERING, HYDERABAD INSTITUTE OF TECHNOLOGY

ABSTRACT

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE, 2017

The main aim of this project is to optimize process plan and creating 3D model using Unigraphics software. Generating NC program of missile shield using NX-CAM software which is exclusively CAM software used to generate part program by feeding the geometry of the component and defining the proper tool path and thus transferring the generated part program to the required CNC machine with the help of DNC lines. The operator thus executes the program with suitable requirements. The project deals with optimizing process plan by specifying appropriate tools, developing tools design if demanded.

INTRODUCTION

A missile is a self-propelled guided weapon system. Missiles have four system components: targeting and/or guidance, flight system, engine, and warhead. Missiles come in types adapted for different purposes: surface-tosurface and air-to-surface (ballistic, cruise, antiship, anti-tank), surface-to-air (anti-aircraft and anti-ballistic), air-to-air, and anti-satellite missiles. The missile shield protects the missile by covering the entire body. Missile shield is aero space component it requires accurate machining and high finishing.

3D MODELLING OF MISSILE SHIELD

Fig. sketch and extrude of shield

Fig. sketch and extrude of slots around shield

Fig. sketch and extrude of slots around shield

Fig. circular array of slots around shield

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE, 2017

ISSN: 2320-1363

Fig. counter sunk holes

Fig. sketch and extrude

Fig. sketch and extrude

Fig. 3Dmodels of missile shield

COMPUTER AIDED MANUFACTURING

Set_up_1 tool path generation

Fig. FACING operation on missile shield

Fig. OD_Rough operation on missile shield

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE, 2017

ISSN: 2320-1363

Fig. ID_Rough operation on missile shield **Set_up_2**

Fig. FACING operation on missile shield

Fig. OD_Rough operation on missile shield

Fig. Groove operation on missile shield

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE , 2017

ISSN: 2320-1363

Fig. ID_Rough operation on missile shield **Milling operations**

Fig. Raw material for milling

Fig. planar mill operations

Fig. face mill area operations

Fig. planar mill operations

Fig. planar mill operations

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE , 2017

ISSN: 2320-1363

Fig. planar mill operations

Fig. planar mill operations

Fig. planar mill operations

Fig. Drilling operations

 $\mathsf{IJMTARC}-\mathsf{VOLUME}-\mathsf{V}-\mathsf{ISSUE}$ - 18 – JUNE , 2017

ISSN: 2320-1363

Fig. Drilling operations

Fig. Drilling operations

Fig. Final part after operations

DESIGNING FIXTURE FOR MISSILE SHIELD

Fig. sketch and extrude of fixture part1

Fig. sketch and extrude of fixture part1

Fig. sketch and extrude of fixture part1

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE , 2017

ISSN: 2320-1363

Fig. 3D model of fixture part1

Fig. sketch and extrude of fixture part2

Fig. sketch and extrude of fixture part2

Fig. sketch and extrude of fixture part2

Fig. 3D model of fixture part2

Fig. sketch and extrude of clamp stud

Fig. sketch and extrude of clamp stud

Fig. 3D model of clamp stud **Fixture assembly**

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE, 2017

ISSN: 2320-1363

Assembly of fixture after completing turning operations

	.70	1.8-	Tool	Time	Feed	liper
TEOCRAM		-		101 31 50		
A FACING		1	00.87.1	00.00 10	A mmor	2000
ROUGH, TURM, OB	1.0	1	00.801	10-60-00	5 mmpr	2440
T NOUCH BORE ID	18	4	AD. BULL	00.02.18	43 monga	12540
CROBINE CROBINE	18	4	IN CROOMER	300.01.00	4.00000	1000
THE FALMEL, P	18	*	.00.8H.L.1	1141-110-128	- reverape	2940
ROUCHLTURMLOD.)	1		00.60.1.1	00:00:59	.7 mmuse	8796
PIMIN, TURN, DD	18	1.1	00.55,4	10.00.03	-4-mempe	2040
THE LROCHNE, DD	1	1	OD_CROOM_A	00.01.12	+ memor	2540
REDUCH_BORLID_1	10	1	ALL DR. ALL	00.01.36	-B HENRIGH	2240
COODVELEL.	10	1	OCCMODULT11	00.00.04	T Hentle	
THE DECOVERED	1	1	ID CROOMER A	Concernence of the	of the state	
THE PLANET NELL	1	1	Add to	00.40.77	200 00000	- 200
THE PLOYAR ARLS. 3	- C	10	and a	00.00.14	200 mention	1.000
THE FACE ARLING AREA	÷.	13	- 1001 J	00.01.80	350 mman	1000
TIS PLANAR ARLING	6	1.50	4483	0012.00	250 mmann	12254
THE PLANNER DELL I		-	Adding	001100	- 201 wergen	214
THE FACE MELINE, ARE		140	MARKED	00.01.30	210 metalan	223
TACE_MILLING_ARE		14	MALL T	100-011 38	250 million	255
BEFACK, MELLING, ARE		14	MBLL R	00.03.30	250 werkplant	1250
V By FACE, MILLING, ARE		his.	\$4811.2	00.03.30	250 mmpm	235
TIS PLANAR MILL 2.IN.		-	60113	00.13.93	250 mmpm	235
P 12 PLANAR_MALL_T_10.	1.1	14	- MILL., 8	00.12.03	250 mmpre	2.554
TRANAK, MEL, 2, IN		14		400.12.318	Jobili memperi	235
TIR PLANAR, MELLI, IN		1.4	RANLE_R	10.11.00	150 mmpm	235
TANAK MELLEDI		1.44	Mitt.4	90.11.00	2413 monthing	224
Y 12 PLANAR, NEEL, 3, 100		-	MELL_4	001100	261 months	254
TIL PLANAR, MILL, 3, IN.		-	MIL. I	001300	281 million	238
TIM PLANAE, MELL, 2, IN.			*#810_4	0011200	261 mmpm	224
THE FLANGE MELL P		. *	-MR.L	100.38.26	120 mmpre	Dep
Se strategy sett a		1	MILL, B	110.2 # 4.4	100 monthese	8812
IN PLANAS, BELL, P		100	area, y	100.10.10	DOD HUMBH	
118 PLANAR SELL L.M.			NAME OF TAXABLE PARTY.	00.29.42	200 months	100
THE PLANAR, MILL, P.		1	T. CLATTER	CONTRACTOR INC.	207 madum	11111
THE IS ADVANT ADDA OF THE	-	1	T CLEATER	100 10 100	2 http://www.com	
TH IN ANCAS PART IN INC.		12	F. CLITTER	000 11 010	12.0.0 memory	1 1 1 1 1
USB CLANAR MALL # IN		12	T. CLITTER	00.11.23	150 minutes	2000
V R. PLANAR MILL R. M.	_	1.00	T_CUTTER	00.11.23	350 memory	3900
TANAR MILL T		1	T_CUITTER	00:07:54	250 mmpm	2900
T ST PLANAR, MILL, FO			Y.CHTTER	00.05.14	250 mmpm	2900
1 34 PLANAE_MILL11		4	T.COTTER	00:03:14	250 mmam	2900
MANAR MIL.12		1	T_OVITER:	00:04.43	250 (049400)	21900
Y MANAK, HUL, 13			T_CUTTER.	001818	250 mmam	1900
1 12 PLANAR_MILL,14		4	T, CUTTER	00.18.06	250 mimprel	2900
BE DRIVER	38	4	CIRICAL POOR	00.03 17	243 mit-pm	2790
RE TRALING 1	12	1	DERIGHER, PORT	40.02.13	2m3/milepro	47.90
BK DRITHIC'S	12	14	DELLING, DOG	00.00 IP	CERG manual	
T BY DRIELING_2, INSTA	_	50	DRILLING_TOO	00:00:27	100 ministeri	1799
BC DESTINC 2 DESA		. 44	DATTING 100	00.011.77	TE2 multim	3.794
BC DRILLING 2 INSTA		-	DRILLING ROO	00.00.27	This memory.	3790
A BE DRITINGTY WOLVED			CHRENKS, 100 .	00.00.27	sus web	2794
TEE DRILLING	-	100	LHOLLING, TOO	00.01.04	20.3 mmpvm	12790
The constitution of		12	Contraction and the	and the state	and second the	-
De councilentement :		12	CONSTRUCTION OF STREET	00.01.02	a bit meniore	2000
De mestair a		1.5	CONTRACTOR	20.07.48	T dil testenett	20.00
of the company of the		2	DEBLINC TOO	THOUGH AN	7.412 community	TRAF
DE CRIMENT B		1	DRULING TOO	00.00.13	240 mmmm	20.40
PE COUNTERTONNESS I		120	CONTRACTOR	00.00/38	2 14 surround	1000
P COUNTERINGING 4		5	COMMONT PRINTER A	100 00 1 F	This energy in	1.2000
TOP CONLINES. P	12	-	DRALING TOO	100-001-018	and the surgery	10.00
V BC DEBLONG	-	-	DRALMO, TOO	00.00:04	240 mmm	1040
Pre constance of	10		OBBLENC TOO	00 00 12	2.40 mmmmm	20.47
P DC CRULLING, 10	1	-	DRELING, TOD	00 00 12	2.40 memory	26.45
TRE COMMITTERADINATION	18	4	COUNTRASPAL	10 0m 07	2.10 mmam	2940
DE COUNTERSHINING &	1	~	COUNTERSING	00.00-07	230 mmpm	1600
	The second					

<u>RESULTS</u>

Manufacturing of missile shield without fixture

Time taken to manufacture a single component without fixture on CNC machine = 13hr 41min 34sec=822min

If the time in seconds is above 30 then it is taken as 1min, if it is below 30 then it is exception

Manufacturing cost of CNC machine per hour = 1200rs/hr

Manufacturing cost of single missile shield = (1200/60)*822= 16440rs

Direct Labour Cost = Tm * Man Hour Rate Rs.

Man Hour Rate = 500 Rs.

Tm= machining timeTm = (822/60) hrs= 13.7hrs

Direct Labour Cost = 13.7*500= 6850 Rs.

Total cost of part =raw material cost + labour cost +manufacturing cost =

1040+6850+16440= 24330rs

Manufacturing of Missile shield with fixture

Time taken to manufacture a single component with fixture on CNC machine = 8hr 51min 59sec=532min

If the time in seconds is above 30 then it is taken as 1min, if it is below 30 then it is exception

Manufacturing cost of CNC machine per hour = 1200rs

Machining cost per piece (machining cost per min x machining time in min) = (1200/60)*532= 10640rs

Manufacturing cost of single missile shield= 10640rs

Direct Labour Cost = Tm * Man Hour Rate Rs.

Man Hour Rate = 500 Rs.

Tm= machining timeTm = (532/60) hrs= 8.9hrs

Direct Labour Cost = 8.9*500=4450 Rs.

Total cost of part =raw material cost + labour cost +manufacturing cost =

1040+4450+10640= 16130rs

Graphical representation

CONCLUSION

ISSN: 2320-1363

IJMTARC - VOLUME - V - ISSUE - 18 - JUNE, 2017

- It is difficult to manufacture missile shield with 3-jaw chuck because it cannot hold the part rigidly for machining slots around the missile shield. More number of parts is rejected.
- Manufacturing time, labour cost, manufacturing cost where reduced Using designed fixture.
- Inspection charts are shown in report
- Graphical representation of reduction of time and cost are in and shown in results.
- There is a drastic reduction of reworks and rejection rate using designed fixture.

BIBLIOGRAPHY

- 1. A book of tool design by Pollack, Publisher: Reston Pub. Co, 1976
- BUDGETING AND 2. ERROR THE DESIGN OF LARGE AEROSTRUCTURES, R. Odi, G. Burley, S Naing, A. Williamson, L Corbett School Industrial of and Science, Manufacturing Cranfield University, UK
- A literature survey of fixturedesign automation, J. C. Trappey, C. R. Liu The International Journal of Advanced Manufacturing Technology, August 1990, Volume 5, Issue 3, pp 240-255
- Design & Development of Fixture for CNC – Reviews, Practices & Future Directions, N. P. Maniar, D. P. VakhariaInternational Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013.
- Mr. A.H. Nalbandh and PROF. C. C. Rajyaguru, "Fixture design optimization using genetic algorithm a review", Journal of information, Knowledge and Research inMechanical Engineering.
- A.D.Kachare, G.M.Dahane and Dipti D. Kachare, "First Operation Machining Fixture", International Journal of Engineering and Innovative Technology (IJEIT), Volume 2, Issue 4, October 2012.
- 7. Amar Raj Singh Suriand A.P.S. Sethi, "Development of Gear Hobbing Fixture Design for Reduction in Machine Setting

Time", International Journal of Scientific and Research Publications, Volume 2, Issue 10, October 2012, ISSN 2250-3153.

- Research, Industrial Systems (2002-05-20). "Manufacturing and Investment Around the World: An International Survey of Factors Affecting Growth and Performance".
- 9. P.Maheandera, Dr.K.P.Padmanaban, R.Rajasekar, R.Devaraja Vignesh, Dr.S.Navaneetha santhakumar, "Scatter Search Optimization for Multi Node Machining Fixture Layout", The International Journal of Engineering and Science (IJES), Volume-3, Issue-01, Pages 30-37, 2014, ISSN (e): 2319 - 1813, www.theijes.com, The IJES Page 30